Lusternik-Schnirelman category and nonlinear elliptic eigenvalue problems

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Lusternik-schnirelman Category and Nonlinear Elliptic Eigenvalue Problems

In a preceding note [3], we observed that under assumptions of polynomial growth on F, G, FPa, and GPa in u and its derivatives, ellipticity and positivity for B, and positivity for A, there exists an eigenf unction of the pair (A, B), i.e. a solution u of the equation Bu=\Au with X in R, with f(u) prescribed and u satisfying a null variational boundary condition corresponding to a given closed...

متن کامل

Lusternik – Schnirelman Theory and Dynamics

In this paper we study a new topological invariant Cat(X, ξ), where X is a finite polyhedron and ξ ∈ H(X;R) is a real cohomology class. Cat(X, ξ) is defined using open covers of X with certain geometric properties; it is a generalization of the classical Lusternik – Schnirelman category. We show that Cat(X, ξ) depends only on the homotopy type of (X, ξ). We prove that Cat(X, ξ) allows to establ...

متن کامل

Orlicz Spaces and Nonlinear Elliptic Eigenvalue Problems

Nonlinear elliptic differential equations of order m acting in a space of m dimensions often occupy a special position in more general theories. In this paper we shall study one aspect of this situation. The nonlinear problem under consideration will be the variational approach to eigenvalue problems for nonlinear elliptic partial differential equations as developed by the author in [l], [2], [...

متن کامل

Variational Methods for Nonlinear Elliptic Eigenvalue Problems

In the present note, we give a simple general proof for the existence of solutions of the following two types of variational problems: PROBLEM A. To minimize fa F(x> u, • • • , Du)dx over a subspace VofW>*(tt). PROBLEM B. TO minimize ƒ« F(x, w, • • • , Du)dx for u in V with / a G(x, u, • • • , D^u)dx^c. The solution of the first problem yields a weak solution of a corresponding elliptic boundar...

متن کامل

Lusternik -schnirelman Theory for Closed 1-forms

S. P. Novikov developed an analog of the Morse theory for closed 1-forms. In this paper we suggest an analog of the Lusternik Schnirelman theory for closed 1-forms. For any cohomology class ξ ∈ H(X,R) we define an integer cl(ξ) (the cuplength associated with ξ); we prove that any closed 1-form representing ξ has at least cl(ξ)− 1 critical points. The number cl(ξ) is defined using cup-products i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Bulletin of the American Mathematical Society

سال: 1965

ISSN: 0002-9904

DOI: 10.1090/s0002-9904-1965-11378-7