Lusternik-Schnirelman category and nonlinear elliptic eigenvalue problems
نویسندگان
چکیده
منابع مشابه
Lusternik-schnirelman Category and Nonlinear Elliptic Eigenvalue Problems
In a preceding note [3], we observed that under assumptions of polynomial growth on F, G, FPa, and GPa in u and its derivatives, ellipticity and positivity for B, and positivity for A, there exists an eigenf unction of the pair (A, B), i.e. a solution u of the equation Bu=\Au with X in R, with f(u) prescribed and u satisfying a null variational boundary condition corresponding to a given closed...
متن کاملLusternik – Schnirelman Theory and Dynamics
In this paper we study a new topological invariant Cat(X, ξ), where X is a finite polyhedron and ξ ∈ H(X;R) is a real cohomology class. Cat(X, ξ) is defined using open covers of X with certain geometric properties; it is a generalization of the classical Lusternik – Schnirelman category. We show that Cat(X, ξ) depends only on the homotopy type of (X, ξ). We prove that Cat(X, ξ) allows to establ...
متن کاملOrlicz Spaces and Nonlinear Elliptic Eigenvalue Problems
Nonlinear elliptic differential equations of order m acting in a space of m dimensions often occupy a special position in more general theories. In this paper we shall study one aspect of this situation. The nonlinear problem under consideration will be the variational approach to eigenvalue problems for nonlinear elliptic partial differential equations as developed by the author in [l], [2], [...
متن کاملVariational Methods for Nonlinear Elliptic Eigenvalue Problems
In the present note, we give a simple general proof for the existence of solutions of the following two types of variational problems: PROBLEM A. To minimize fa F(x> u, • • • , Du)dx over a subspace VofW>*(tt). PROBLEM B. TO minimize ƒ« F(x, w, • • • , Du)dx for u in V with / a G(x, u, • • • , D^u)dx^c. The solution of the first problem yields a weak solution of a corresponding elliptic boundar...
متن کاملLusternik -schnirelman Theory for Closed 1-forms
S. P. Novikov developed an analog of the Morse theory for closed 1-forms. In this paper we suggest an analog of the Lusternik Schnirelman theory for closed 1-forms. For any cohomology class ξ ∈ H(X,R) we define an integer cl(ξ) (the cuplength associated with ξ); we prove that any closed 1-form representing ξ has at least cl(ξ)− 1 critical points. The number cl(ξ) is defined using cup-products i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Bulletin of the American Mathematical Society
سال: 1965
ISSN: 0002-9904
DOI: 10.1090/s0002-9904-1965-11378-7